Frazer-Nash

Research and Development


Powertrain Research and Development

Frazer-Nash Research has been developing its innovative Range-Extended Electric (REE) Powertrain for over two decades.

The Range-Extended Electric Powertrain
FN Unify
The powertrain
The powertrain
The powertrain
The powertrain
The powertrain
Explore the Range-Extended Electric Powertrain

Powertrain cross-section is based on the Metrocab taxi, currently in service in London. Other powertrain configurations are possible.

Motor controller
Battery pack
Range-extender and generator
Key Powertrain Components

All elements of the electric powertrain, from the traction systems to the energy management systems, have been designed and engineered in-house.

  • Electric motors
    Electric Motors

    FN Electric Motors combine proprietary control technology with advanced permanent magnet motor design to achieve an efficiency of over 96%. Class leading, small in size, lightweight, highly reliable and water cooled, these motors are a key element in contributing to the high efficiency of the powertrain.

  • Controller
    Controllers

    The Digital Power Controllers provide power and safety management, optimisation and control functions for the electric motors. The controllers’ purpose-designed hardware and FN proprietary software accurately balance the power and torque between the independent motors.


  • Range extender

    Range Extender

    The range extender is an internal combustion engine coupled to a matched generator and controlled as an auxiliary power unit. The electricity generated charges the battery pack. Alternatively, this energy is diverted to directly power the motors thus minimising charge/discharge losses in the battery. The generator is set to run at one load point that represents the ‘sweet spot’ of the engine. This is the speed at which the engine operates at maximum efficiency and minimum fuel use. The engine does not drive the wheels in any way.



  • Battery pack

    Battery Pack

    The battery pack contains a number of large-format lithium-ion battery cells. The pack has been designed to accept high charge in a short period of time, maximising the benefit from regenerative braking, fast chargers and the on board range extender. The battery packs and sizes suit individual vehicle types to ensure safety, integrity and optimum road handling.

    EAS, part of the Kamkorp Group of Companies, focuses on the development of lithium-ion cells.

  • Battery management system
    Battery Management System

    The Frazer-Nash Battery Management System is one of the most advanced systems of its kind for maximum life and performance of the battery pack. It is designed to monitor and manage each individual cell of the battery pack as well as interface with other systems which require information on the state-of-charge and on individual battery cell data.

  • DC-DC Converter
    DC-DC Converter

    Designed in-house, the compact and highly efficient DC-DC converter steps down the high voltage of the battery pack to the lower voltage required to power the majority of the ancillary systems on the vehicle such as lighting, communications and door controls (12V to 24V).

  • Portable EVSE
    Portable EVSE

    Portable Electric Vehicle Supply Equipment (EVSE) is also available for ‘home’ charging from a domestic mains socket. This contains the necessary safety isolation and detection circuitry, together with industry standard vehicle connectors, to ensure compatibility with charging stations and other roadside charge points.


  • DARTS

    Data Acquisition and Remote Telemetry System (DARTS)

    An FN Unify System, DARTS allows real-time remote monitoring of vehicle systems, providing performance, technical data and geographical positioning of a vehicle. DARTS uses a built in cell phone module to transmit data packets to a secured server. The data is compressed, resulting in very little data cost per year. This database can store data for millions of vehicles for decades. As the transfer of data is uni-directional, it prevents any external access and breaches of security. The data or information sent can be tailored to specific users or interest groups.


  • CMFD

    Colour Multifunction Display (CMFD)

    An FN Unify System, the Colour Multifunction Display (CMFD) is a flexible and interactive infotainment system which incorporates state-of-the-art display and control functionalities in a digital format. Android based, the CMFD can take full advantage of all the apps within the Google Play Store, as well as full smart phone integration with applications such as Mirrorlink. The CMFD also enables users to monitor and control systems in their vehicle.


The Powertrain

Frazer-Nash Research has developed a Range-Extended Electric (REE) powertrain scalable for a wide range of vehicles – from passenger cars and buses to mass transit monorails. Vehicles with the FN REE powertrain are electric vehicles (EVs) with an internal combustion engine (range-extender) powering a matched generator, working as an auxiliary power unit, which charges the battery pack and/or provides energy directly to the electric motors.


‘Digital Differential’

The FN ‘Digital Differential’ replaces the mechanical differential and eliminates all of the typical mechanical losses associated with conventional internal combustion drive trains and simple series or parallel hybrids. It provides better motor control, traction, and performance. The use of multiple motors and digital differential is unique to FN.


The Range-Extender

The Range-Extender allows for an easy and efficient way to recharge the batteries, charging can also be achieved by plugging-in to any mains outlet. This configuration provides considerable fuel savings and allows for seamless integration with alternative auxiliary power units and/or fuel types such as hydrogen or fuel cells – ensuring its vehicles are future proof.


FN Unify

Integrated into the heart of all of Frazer-Nash’s intelligent components is FN Unify.

FN Unify allows for unique connectivity and integration across a spectrum of devices and platforms, bringing data acquisition systems, control systems, and the computing toolbox under one unified interface.

Frazer-Nash utilises a cross platform software engine, to enable a host of different systems, from the DAB radio to the traction subsystems, to communicate with each other in a unique and safe manner. This technology is fully scalable and able to work with any CAN device, on any display, in any vehicle.

All the data from this system can also be transmitted remotely from the vehicle to a control centre, allowing for thorough analysis on a wide range of metrics. The system is then able to feedback valuable information and advice to the driver, or fleet operator. The system is fully secure, utilising a proprietary means of security unseen in the automotive landscape.

Range-extender & generator

Range-Extender & Generator

The range-extender is a small petrol (1.0L–1.5L) internal combustion engine, coupled with a generator, which is used to recharge the battery pack or provide power directly to the motors. The range-extender engine does not drive the vehicle in any way. Charging can also be achieved from any mains outlet or electric vehicle charging station.

Battery pack

Battery Pack

The energy generated from the Range-Extender and the mains plug-in charger is stored in the battery pack. This energy is used to power the electric motors

Motors and controllers

Motors & Controllers

All FN Range-Extended Electric vehicles are driven by multiple electric brushless motors. In this case, the Metrocab is driven by two electric motors in the rear.


Solar Energy & Smart-Grid Research and Development

Frazer-Nash, in association with other Group companies, carries out research, development and production of energy capture and generation systems. Using a combination of the latest microelectronics, photovoltaic panels and lithium-ion battery technologies, Frazer-Nash has commercialised a variety of environmentally friendly energy generation and storage solutions.

Solar Concentrator

Frazer-Nash’s concentrated photovoltaic panels (CPV) take the sun’s energy and concentrates it via an array of Fresnel lenses resulting in a significant reduction of the amount of silicon required compared to a traditional flat-plate solar panel. This allows the unit to be extremely lightweight but robust.


Solar concentrator
Solar concentrator
Solar concentrator
Solar concentrator
Solar concentrator
Solar concentrator
Solar concentrator
Solar concentrator
Two-axis tracker
Concentrator module
Frame and mounting system

Solar Charging Station

The Solar Charging Station is the result of decades of research into energy capture and storage solutions. The product utilises both CPV and PV technologies and allows the charge of electric and range-extended electric vehicles. The first station, currently installed in Surrey, United Kingdom, provides 80,000 ‘free’ kilometres per year, generating over 12 MWh per annum.


Annual Solar Charging Station Savings

‘Free’ kilometres generated per bay, per year


Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Annual solar charging station savings
Two-Axis Tracker

The Frazer-Nash CPV system uses digital 2-axis control loop tracking through solar position algorithms allowing the system to align with the sun and thus maximising output from any latitude.

Concentrator Module

The concentrator module is a self-cooling sealed unit. Each unit consists of 24 concentrator modules, each containing 12 connected monocrystalline silicon cells with individual diode protection. The module concentrates the suns energy via an array of Fresnel lenses. The output voltage per standard array is typically 72 V, but can be tailored for specific applications.

Frame & Mounting System

The rigid lightweight aluminium frame comes fully assembled. The mounting system is suitable for both roof-top and field applications, with trouble free ground mounting, requiring zero preparation before installation. The system is easily de-mountable for relocation if necessary.


Capabilities

Frazer-Nash Research has a wealth of knowledge in energy efficient systems, and a host of in-house capabilities. It provides technical and engineering solutions to its clients and other Group organisations.

  • Mechanical Design & Packaging
  • Electrical & Electronic Design/Simulation
  • Software Development
  • Virtual Reality (VR)
  • Microeletronics
  • Safety, Validation & Testing

Mechanical Design & Packaging

Mechanical components and sub-systems are designed ‘in-house’ using industry standard suites such as CATIA and SolidWorks to complement the electrical and electronic sub-systems. Thermal modelling and CFD (Computerised Fluid Dynamics) are an essential part of system design to ensure that an effective, compact, lightweight cooling system is produced.


Electrical & Electronic Design/Simulation

The design of the electronic circuitry within the Frazer-Nash powertrain and ancillaries, from schematic through to printed circuit board (PCB) layout, is carried out in-house. Frazer-Nash’s electronics team continually work to innovate PCB designs that have an improved thermal performance, reduced wiring length and increased robustness and versatility.


Software Development

Software development is core to Frazer-Nash’s R&D ethos. Frazer-Nash’s Digital Differential replaces a conventional, inefficient mechanical differential (in its Range-Extended Electric (REE) Powertrain). This program has been conceived, coded and developed by the Frazer-Nash software team over the past 25 years.


Virtual Reality (VR)

Virtual Reality has proven to be an extremely useful tool when designing and packaging components. VR allows engineers to simulate and engage with components and products, from a micro to macro level. A specialised software team develops VR programs in-house for a range of applications e.g. training, remote product diagnoses and repairs.


Microelectronics

Frazer-Nash has extensive resources to design and produce its own Application Specific Integrated Circuit (ASIC) chips. These have been used to increase system reliability in the FN powertrain for over 25 years. In addition these designs enable a reduction in the size and weight of components, enhanced security and storage for core intellectual property and lower power consumption.


Safety, Validation & Testing

Safety and Testing is priority in the development of new Frazer-Nash products and technologies. Engineers work to the toughest worldwide standards, including ISO 26262 to which all new electrical and electronic systems must conform. Teams within Frazer-Nash also ensure compliance to safety guidelines such as MISRA (Motor Industry Software Reliability Association), to assure end users and auditors that best practice methods are adopted.


History

In the early 20th century, Archibald Frazer Nash founded Frazer Nash Ltd and partnered with Henry Ronald Godfrey, a college friend, to produce the GN cycle car.
In the early 20th century, Archibald Frazer Nash founded Frazer Nash Ltd and partnered with Henry Ronald Godfrey, a college friend, to produce the GN cycle car.
In 1923, Frazer Nash started the Frazer Nash Company to produce an evolution of the GN, still chain-driven, which became the Frazer Nash sports car.
In 1923, Frazer Nash started the Frazer Nash Company to produce an evolution of the GN, still chain-driven, which became the Frazer Nash sports car.
In 1929, Frazer Nash started a separate engineering company. Nash and Thompson and was involved in arnaments with its turrets in use on British Bombers such as the Avro Lancaster and the Vickers Wellington.
In 1929, Frazer Nash started a separate engineering company. Nash and Thompson and was involved in arnaments with its turrets in use on British Bombers such as the Avro Lancaster and the Vickers Wellington.
After WWII, Frazer Nash began to invent engineering products for defence, aircraft and atomic energy cells up until the passing of Archibald in 1965.
After WWII, Frazer Nash began to invent engineering products for defence, aircraft and atomic energy cells up until the passing of Archibald in 1965.
Forced into receivership in the late 1980’s, the Frazer Nash Company was split into three divisions. In 1991 Frazer-Nash Research Ltd was formed, where the pursuit of game changing innovation and engineering excellence continued.
Forced into receivership in the late 1980’s, the Frazer Nash Company was split into three divisions. In 1991 Frazer-Nash Research Ltd was formed, where the pursuit of game changing innovation and engineering excellence continued.
The electric Go-Kart was FNR’s first electric drive product.
The electric Go-Kart was FNR’s first electric drive product.
In September 2000, FNR was the official EV provider to the Sydney Olympic Games, providing over 300 vehicles including the 12 motor configuration Roadtrain.
In September 2000, FNR was the official EV provider to the Sydney Olympic Games, providing over 300 vehicles including the 12 motor configuration Roadtrain.
In 2003, extending the FN powertrain platform, FNR, in collaboration with Metrail Ltd, constructed a mass transit monorail demonstrator in Nilai, Malaysia.
In 2003, extending the FN powertrain platform, FNR, in collaboration with Metrail Ltd, constructed a mass transit monorail demonstrator in Nilai, Malaysia.
In 2009, in collaboration with Italdesign Giugiaro, Frazer-Nash unveiled the range-extended electric Namir concept supercar at the Geneva Motor Show.
In 2009, in collaboration with Italdesign Giugiaro, Frazer-Nash unveiled the range-extended electric Namir concept supercar at the Geneva Motor Show.
In 2014, Ecotive’s Metrocab, powered by the FN range-extended electric powertrain system, became the first zero-emission capable hackney carriage to be licensed in the British Capital. To mark this milestone, a trial fleet was deployed and is still operating to this very day.
In 2014, Ecotive’s Metrocab, powered by the FN range-extended electric powertrain system, became the first zero-emission capable hackney carriage to be licensed in the British Capital. To mark this milestone, a trial fleet was deployed and is still operating to this very day.
The Kamkorp Group

First name
Please enter your first name.
Surname
Please enter your surname.
Email address
Please enter a valid email address.
Phone number (optional)
Please enter a valid phone number.

Subject
Please enter a subject to your message.
Message
Please enter a detailed message.

Thank you. We have received your message.×
Sorry, there was an error receiving your message. Please try again later.×

© 2016 Frazer-Nash Research Limited
All rights reserved